TQC¶
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics (TQC). Truncated Quantile Critics (TQC) builds on SAC, TD3 and QR-DQN, making use of quantile regression to predict a distribution for the value function (instead of a mean value). It truncates the quantiles predicted by different networks (a bit as it is done in TD3).
Available Policies
Notes¶
Original paper: https://arxiv.org/abs/2005.04269
Original Implementation: https://github.com/bayesgroup/tqc_pytorch
Can I use?¶
Recurrent policies: ❌
Multi processing: ✔️
Gym spaces:
Space |
Action |
Observation |
---|---|---|
Discrete |
❌ |
✔️ |
Box |
✔️ |
✔️ |
MultiDiscrete |
❌ |
✔️ |
MultiBinary |
❌ |
✔️ |
Dict |
❌ |
✔️ |
Example¶
import gym
import numpy as np
from sb3_contrib import TQC
env = gym.make("Pendulum-v0")
policy_kwargs = dict(n_critics=2, n_quantiles=25)
model = TQC("MlpPolicy", env, top_quantiles_to_drop_per_net=2, verbose=1, policy_kwargs=policy_kwargs)
model.learn(total_timesteps=10000, log_interval=4)
model.save("tqc_pendulum")
del model # remove to demonstrate saving and loading
model = TQC.load("tqc_pendulum")
obs = env.reset()
while True:
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
if done:
obs = env.reset()
Results¶
Result on the PyBullet benchmark (1M steps) and on BipedalWalkerHardcore-v3 (2M steps) using 3 seeds. The complete learning curves are available in the associated PR.
The main difference with SAC is on harder environments (BipedalWalkerHardcore, Walker2D).
Note
Hyperparameters from the gSDE paper were used (as they are tuned for SAC on PyBullet envs), including using gSDE for the exploration and not the unstructured Gaussian noise but this should not affect results in simulation.
Note
We are using the open source PyBullet environments and not the MuJoCo simulator (as done in the original paper). You can find a complete benchmark on PyBullet envs in the gSDE paper if you want to compare TQC results to those of A2C/PPO/SAC/TD3.
Environments |
SAC |
TQC |
---|---|---|
gSDE |
gSDE |
|
HalfCheetah |
2984 +/- 202 |
3041 +/- 157 |
Ant |
3102 +/- 37 |
3700 +/- 37 |
Hopper |
2262 +/- 1 |
2401 +/- 62* |
Walker2D |
2136 +/- 67 |
2535 +/- 94 |
BipedalWalkerHardcore |
13 +/- 18 |
228 +/- 18 |
* with tuned hyperparameter top_quantiles_to_drop_per_net
taken from the original paper
How to replicate the results?¶
Clone RL-Zoo and checkout the branch feat/tqc
:
git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/
git checkout feat/tqc
Run the benchmark (replace $ENV_ID
by the envs mentioned above):
python train.py --algo tqc --env $ENV_ID --eval-episodes 10 --eval-freq 10000
Plot the results:
python scripts/all_plots.py -a tqc -e HalfCheetah Ant Hopper Walker2D BipedalWalkerHardcore -f logs/ -o logs/tqc_results
python scripts/plot_from_file.py -i logs/tqc_results.pkl -latex -l TQC
Comments¶
This implementation is based on SB3 SAC implementation and uses the code from the original TQC implementation for the quantile huber loss.