Source code for sb3_contrib.common.maskable.policies

from functools import partial
from typing import Any, Dict, List, Optional, Tuple, Type, Union

import gym
import numpy as np
import torch as th
from stable_baselines3.common.policies import BasePolicy
from stable_baselines3.common.torch_layers import (
    BaseFeaturesExtractor,
    CombinedExtractor,
    FlattenExtractor,
    MlpExtractor,
    NatureCNN,
)
from stable_baselines3.common.type_aliases import Schedule
from torch import nn

from sb3_contrib.common.maskable.distributions import MaskableDistribution, make_masked_proba_distribution


[docs]class MaskableActorCriticPolicy(BasePolicy): """ Policy class for actor-critic algorithms (has both policy and value prediction). Used by A2C, PPO and the likes. :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param ortho_init: Whether to use or not orthogonal initialization :param features_extractor_class: Features extractor to use. :param features_extractor_kwargs: Keyword arguments to pass to the features extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ): if optimizer_kwargs is None: optimizer_kwargs = {} # Small values to avoid NaN in Adam optimizer if optimizer_class == th.optim.Adam: optimizer_kwargs["eps"] = 1e-5 super().__init__( observation_space, action_space, features_extractor_class, features_extractor_kwargs, optimizer_class=optimizer_class, optimizer_kwargs=optimizer_kwargs, squash_output=False, ) # Default network architecture, from stable-baselines if net_arch is None: if features_extractor_class == NatureCNN: net_arch = [] else: net_arch = [dict(pi=[64, 64], vf=[64, 64])] self.net_arch = net_arch self.activation_fn = activation_fn self.ortho_init = ortho_init self.features_extractor = features_extractor_class(self.observation_space, **self.features_extractor_kwargs) self.features_dim = self.features_extractor.features_dim self.normalize_images = normalize_images # Action distribution self.action_dist = make_masked_proba_distribution(action_space) self._build(lr_schedule)
[docs] def forward( self, obs: th.Tensor, deterministic: bool = False, action_masks: Optional[np.ndarray] = None, ) -> Tuple[th.Tensor, th.Tensor, th.Tensor]: """ Forward pass in all the networks (actor and critic) :param obs: Observation :param deterministic: Whether to sample or use deterministic actions :param action_masks: Action masks to apply to the action distribution :return: action, value and log probability of the action """ # Preprocess the observation if needed features = self.extract_features(obs) latent_pi, latent_vf = self.mlp_extractor(features) # Evaluate the values for the given observations values = self.value_net(latent_vf) distribution = self._get_action_dist_from_latent(latent_pi) if action_masks is not None: distribution.apply_masking(action_masks) actions = distribution.get_actions(deterministic=deterministic) log_prob = distribution.log_prob(actions) return actions, values, log_prob
def _get_constructor_parameters(self) -> Dict[str, Any]: data = super()._get_constructor_parameters() data.update( dict( net_arch=self.net_arch, activation_fn=self.activation_fn, lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone ortho_init=self.ortho_init, optimizer_class=self.optimizer_class, optimizer_kwargs=self.optimizer_kwargs, features_extractor_class=self.features_extractor_class, features_extractor_kwargs=self.features_extractor_kwargs, ) ) return data def _build_mlp_extractor(self) -> None: """ Create the policy and value networks. Part of the layers can be shared. """ # Note: If net_arch is None and some features extractor is used, # net_arch here is an empty list and mlp_extractor does not # really contain any layers (acts like an identity module). self.mlp_extractor = MlpExtractor( self.features_dim, net_arch=self.net_arch, activation_fn=self.activation_fn, device=self.device, ) def _build(self, lr_schedule: Schedule) -> None: """ Create the networks and the optimizer. :param lr_schedule: Learning rate schedule lr_schedule(1) is the initial learning rate """ self._build_mlp_extractor() self.action_net = self.action_dist.proba_distribution_net(latent_dim=self.mlp_extractor.latent_dim_pi) self.value_net = nn.Linear(self.mlp_extractor.latent_dim_vf, 1) # Init weights: use orthogonal initialization # with small initial weight for the output if self.ortho_init: # TODO: check for features_extractor # Values from stable-baselines. # features_extractor/mlp values are # originally from openai/baselines (default gains/init_scales). module_gains = { self.features_extractor: np.sqrt(2), self.mlp_extractor: np.sqrt(2), self.action_net: 0.01, self.value_net: 1, } for module, gain in module_gains.items(): module.apply(partial(self.init_weights, gain=gain)) # Setup optimizer with initial learning rate self.optimizer = self.optimizer_class(self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs) def _get_action_dist_from_latent(self, latent_pi: th.Tensor) -> MaskableDistribution: """ Retrieve action distribution given the latent codes. :param latent_pi: Latent code for the actor :return: Action distribution """ action_logits = self.action_net(latent_pi) return self.action_dist.proba_distribution(action_logits=action_logits) def _predict( self, observation: th.Tensor, deterministic: bool = False, action_masks: Optional[np.ndarray] = None, ) -> th.Tensor: """ Get the action according to the policy for a given observation. :param observation: :param deterministic: Whether to use stochastic or deterministic actions :param action_masks: Action masks to apply to the action distribution :return: Taken action according to the policy """ return self.get_distribution(observation, action_masks).get_actions(deterministic=deterministic)
[docs] def predict( self, observation: Union[np.ndarray, Dict[str, np.ndarray]], state: Optional[Tuple[np.ndarray, ...]] = None, episode_start: Optional[np.ndarray] = None, deterministic: bool = False, action_masks: Optional[np.ndarray] = None, ) -> Tuple[np.ndarray, Optional[Tuple[np.ndarray, ...]]]: """ Get the policy action from an observation (and optional hidden state). Includes sugar-coating to handle different observations (e.g. normalizing images). :param observation: the input observation :param state: The last states (can be None, used in recurrent policies) :param episode_start: The last masks (can be None, used in recurrent policies) :param deterministic: Whether or not to return deterministic actions. :param action_masks: Action masks to apply to the action distribution :return: the model's action and the next state (used in recurrent policies) """ # TODO (GH/1): add support for RNN policies # if state is None: # state = self.initial_state # if episode_start is None: # episode_start = [False for _ in range(self.n_envs)] # Switch to eval mode (this affects batch norm / dropout) self.set_training_mode(False) observation, vectorized_env = self.obs_to_tensor(observation) with th.no_grad(): actions = self._predict(observation, deterministic=deterministic, action_masks=action_masks) # Convert to numpy actions = actions.cpu().numpy() if isinstance(self.action_space, gym.spaces.Box): if self.squash_output: # Rescale to proper domain when using squashing actions = self.unscale_action(actions) else: # Actions could be on arbitrary scale, so clip the actions to avoid # out of bound error (e.g. if sampling from a Gaussian distribution) actions = np.clip(actions, self.action_space.low, self.action_space.high) if not vectorized_env: if state is not None: raise ValueError("Error: The environment must be vectorized when using recurrent policies.") actions = actions.squeeze(axis=0) return actions, None
[docs] def evaluate_actions( self, obs: th.Tensor, actions: th.Tensor, action_masks: Optional[np.ndarray] = None, ) -> Tuple[th.Tensor, th.Tensor, th.Tensor]: """ Evaluate actions according to the current policy, given the observations. :param obs: :param actions: :return: estimated value, log likelihood of taking those actions and entropy of the action distribution. """ features = self.extract_features(obs) latent_pi, latent_vf = self.mlp_extractor(features) distribution = self._get_action_dist_from_latent(latent_pi) if action_masks is not None: distribution.apply_masking(action_masks) log_prob = distribution.log_prob(actions) values = self.value_net(latent_vf) return values, log_prob, distribution.entropy()
[docs] def get_distribution(self, obs: th.Tensor, action_masks: Optional[np.ndarray] = None) -> MaskableDistribution: """ Get the current policy distribution given the observations. :param obs: :param action_masks: :return: the action distribution. """ features = self.extract_features(obs) latent_pi = self.mlp_extractor.forward_actor(features) distribution = self._get_action_dist_from_latent(latent_pi) if action_masks is not None: distribution.apply_masking(action_masks) return distribution
[docs] def predict_values(self, obs: th.Tensor) -> th.Tensor: """ Get the estimated values according to the current policy given the observations. :param obs: :return: the estimated values. """ features = self.extract_features(obs) latent_vf = self.mlp_extractor.forward_critic(features) return self.value_net(latent_vf)
[docs]class MaskableActorCriticCnnPolicy(MaskableActorCriticPolicy): """ CNN policy class for actor-critic algorithms (has both policy and value prediction). Used by A2C, PPO and the likes. :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param ortho_init: Whether to use or not orthogonal initialization :param features_extractor_class: Features extractor to use. :param features_extractor_kwargs: Keyword arguments to pass to the features extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ): super().__init__( observation_space, action_space, lr_schedule, net_arch, activation_fn, ortho_init, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs, )
[docs]class MaskableMultiInputActorCriticPolicy(MaskableActorCriticPolicy): """ MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction). Used by A2C, PPO and the likes. :param observation_space: Observation space (Tuple) :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param ortho_init: Whether to use or not orthogonal initialization :param features_extractor_class: Uses the CombinedExtractor :param features_extractor_kwargs: Keyword arguments to pass to the feature extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Dict, action_space: gym.spaces.Space, lr_schedule: Schedule, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, features_extractor_class: Type[BaseFeaturesExtractor] = CombinedExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ): super().__init__( observation_space, action_space, lr_schedule, net_arch, activation_fn, ortho_init, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs, )